August 10, 2022
  • Jones, R. O. Density functional theory: its origins, rise to prominence, and future. Rev. Mod. Phys. 87, 897–923 (2015).

    MathSciNet 
    Article 

    Google Scholar 

  • Krylov, A. et al. Perspective: Computational chemistry software and its advancement as illustrated through three grand challenge cases for molecular science. J. Chem. Phys. 149, 180901 (2018).

    Article 

    Google Scholar 

  • Schleder, G. R., Padilha, A. C. M., Acosta, C. M., Costa, M. & Fazzio, A. From DFT to machine learning: recent approaches to materials science—a review. J. Phys. Mater. 2, 032001 (2019).

    Article 

    Google Scholar 

  • Maurer, R. J. et al. Advances in density-functional calculations for materials modeling. Annu. Rev. Mater. Res. 49, 1–30 (2019).

    Article 

    Google Scholar 

  • Bogojeski, M., Vogt-Maranto, L., Tuckerman, M. E., Müller, K.-R. & Burke, K. Quantum chemical accuracy from density functional approximations via machine learning. Nat. Commun. 11, 5223 (2020).

    Article 

    Google Scholar 

  • McArdle, S., Endo, S., Aspuru-Guzik, A., Benjamin, S. C. & Yuan, X. Quantum computational chemistry. Rev. Mod. Phys. 92, 015003 (2020).

    MathSciNet 
    Article 

    Google Scholar 

  • Bell, A. T. & Head-Gordon, M. Quantum mechanical modeling of catalytic processes. Annu. Rev. Chem. Biomol. Eng. 2, 453–477 (2011).

    Article 

    Google Scholar 

  • Xu, S. & Carter, E. A. Theoretical insights into heterogeneous (photo)electrochemical CO2 reduction. Chem. Rev. 119, 6631–6669 (2019).

    Article 

    Google Scholar 

  • G. Wolfowicz et al. Quantum guidelines for solid-state spin defects. Nat. Rev. Mater. 6, 906–925 (2021)

  • Dreyer, C. E., Alkauskas, A., Lyons, J. L., Janotti, A. & Van de Walle, C. G. First-principles calculations of point defects for quantum technologies. Annu. Rev. Mater. Res. 48, 1–26 (2018).

    Article 

    Google Scholar 

  • Weber, J. R. et al. Quantum computing with defects. Proc. Natl Acad. Sci. USA 107, 8513–8518 (2010).

    Article 

    Google Scholar 

  • Agrawal, A. & Choudhary, A. Perspective: Materials informatics and big data: realization of the ‘fourth paradigm’ of science in materials science. APL Mater. 4, 053208 (2016).

    Article 

    Google Scholar 

  • Himanen, L., Geurts, A., Foster, A. S. & Rinke, P. Data-driven materials science: status, challenges, and perspectives. Adv. Sci. 6, 1900808 (2019).

    Article 

    Google Scholar 

  • S. Dong, S., Govoni, M. & Galli, G. Machine learning dielectric screening for the simulation of excited state properties of molecules and materials. Chem. Sci. 12, 4970–4980 (2021).

    Article 

    Google Scholar 

  • Yuan, X. A quantum-computing advantage for chemistry. Science 369, 1054–1055 (2020).

    Article 

    Google Scholar 

  • V. E. Elfving et al. How will quantum computers provide an industrially relevant computational advantage in quantum chemistry? Preprint at http://arxiv.org/abs/2009.12472 (2020).

  • von Burg, V. et al. Quantum computing enhanced computational catalysis. Phys Rev. Res. 3, 033055 (2021).

    Article 

    Google Scholar 

  • Liu, H. et al. Prospects of quantum computing for molecular sciences. Mater. Theory 6, 11 (2022).

    Article 

    Google Scholar 

  • Ollitrault, P. J., Miessen, A. & Tavernelli, I. Molecular quantum dynamics: a quantum computing perspective. Acc. Chem. Res. 54, 4229–4238 (2021).

  • Helgaker, T., Jorgensen, P. & Olsen, J. Molecular Electronic-Structure Theory (Wiley, 2014)

  • Martin, R. M. Electronic Structure: Basic Theory and Practical Methods (Cambridge Univ. Press, 2020)

  • Martin, R. M., Reining, L. & Ceperley, D. M. Interacting Electrons (Cambridge Univ. Press, 2016)

  • Jordan, P., Neumann, J. V. & Wigner, E. On an algebraic generalization of the quantum mechanical formalism. Ann. Math. 35, 29–64 (1934).

    MathSciNet 
    MATH 
    Article 

    Google Scholar 

  • Bravyi, S. B. & Kitaev, A. Y. Fermionic quantum computation. Ann. Phys. (N. Y.) 298, 210–226 (2002).

    MathSciNet 
    MATH 
    Article 

    Google Scholar 

  • Seeley, J. T., Richard, M. J. & Love, P. J. The Bravyi–Kitaev transformation for quantum computation of electronic structure. J. Chem. Phys. 137, 224109 (2012).

    Article 

    Google Scholar 

  • Verstraete, F. & Cirac, J. I. Mapping local Hamiltonians of fermions to local Hamiltonians of spins. J. Stat. Mech. Theory Exp. 2005, P09012–P09012 (2005).

    MathSciNet 
    MATH 
    Article 

    Google Scholar 

  • Aleksandrowicz, G. et al. Qiskit: an open-source framework for quantum computing. https://doi.org/10.5281/zenodo.2562111 (2019).

  • McClean, J. R. et al. OpenFermion: the electronic structure package for quantum computers. Quantum Sci. Technol. 5, 034014 (2020).

    Article 

    Google Scholar 

  • Peruzzo, A. et al. A variational eigenvalue solver on a photonic quantum processor. Nat. Commun. 5, 4213 (2014).

    Article 

    Google Scholar 

  • McClean, J. R., Romero, J., Babbush, R. & Aspuru-Guzik, A. The theory of variational hybrid quantum–classical algorithms. New J. Phys. 18, 023023 (2016).

    MATH 
    Article 

    Google Scholar 

  • Nielsen, M. A. & Chuang, I. L. Quantum Computation and Quantum Information: 10th Anniversary Edition (Cambridge Univ. Press, 2010).

  • Bravyi, S., Gosset, D., König, R. & Tomamichel, M. Quantum advantage with noisy shallow circuits. Nat. Phys. 16, 1040–1045 (2020).

    Article 

    Google Scholar 

  • Aspuru-Guzik, A., Dutoi, A. D., Love, P. J. & Head-Gordon, M. Simulated quantum computation of molecular energies. Science 309, 1704–1707 (2005).

    Article 

    Google Scholar 

  • Lanyon, B. P. et al. Towards quantum chemistry on a quantum computer. Nat. Chem. 2, 106–111 (2010).

    Article 

    Google Scholar 

  • Li, Z. et al. Solving quantum ground-state problems with nuclear magnetic resonance. Sci. Rep. 1, 88 (2011).

    Article 

    Google Scholar 

  • Shen, Y. et al. Quantum implementation of the unitary coupled cluster for simulating molecular electronic structure. Phys. Rev. A 95, 020501 (2017).

    Article 

    Google Scholar 

  • O’Malley, P. J. J. et al. Scalable quantum simulation of molecular energies. Phys. Rev. X 6, 031007 (2016).

    Google Scholar 

  • Santagati, R. et al. Witnessing eigenstates for quantum simulation of Hamiltonian spectra. Sci. Adv. 4, eaap9646 (2018).

    Article 

    Google Scholar 

  • Kandala, A. et al. Hardware-efficient variational quantum eigensolver for small molecules and quantum magnets. Nature 549, 242–246 (2017).

    Article 

    Google Scholar 

  • Hempel, C. et al. Quantum chemistry calculations on a trapped-ion quantum simulator. Phys. Rev. X 8, 031022 (2018).

    Google Scholar 

  • Colless, J. I. et al. Computation of molecular spectra on a quantum processor with an error-resilient algorithm. Phys. Rev. X 8, 011021 (2018).

    Google Scholar 

  • Kandala, A. et al. Error mitigation extends the computational reach of a noisy quantum processor. Nature 567, 491–495 (2019).

    Article 

    Google Scholar 

  • Ryabinkin, I. G., Yen, T.-C., Genin, S. N. & Izmaylov, A. F. Qubit coupled cluster method: a systematic approach to quantum chemistry on a quantum computer. J. Chem. Theory Comput. 14, 6317–6326 (2018).

    Article 

    Google Scholar 

  • Li, Z. et al. Quantum simulation of resonant transitions for solving the eigenproblem of an effective water Hamiltonian. Phys. Rev. Lett. 122, 090504 (2019).

    Article 

    Google Scholar 

  • Nam, Y. et al. Ground-state energy estimation of the water molecule on a trapped-ion quantum computer. npj Quantum Inf. 6, 33 (2020).

  • McCaskey, A. J. et al. Quantum chemistry as a benchmark for near-term quantum computers. npj Quantum Inf. 5, 99 (2019).

  • Gao, Q. et al. Computational investigations of the lithium superoxide dimer rearrangement on noisy quantum devices. J. Phys. Chem. A 125, 1827–1836 (2021).

    Article 

    Google Scholar 

  • Smart, S. E. & Mazziotti, D. A. Quantum–classical hybrid algorithm using an error-mitigating N-representability condition to compute the Mott metal–insulator transition. Phys. Rev. A 100, 022517 (2019).

    Article 

    Google Scholar 

  • Sagastizabal, R. et al. Experimental error mitigation via symmetry verification in a variational quantum eigensolver. Phys. Rev. A 100, 010302 (2019).

    Article 

    Google Scholar 

  • Higgott, O., Wang, D. & Brierley, S. Variational quantum computation of excited states. Quantum 3, 156 (2019).

    Article 

    Google Scholar 

  • Google AI Quantum et al. Hartree–Fock on a superconducting qubit quantum computer Science 369, 1084–1089 (2020).

  • Metcalf, M., Bauman, N. P., Kowalski, K. & de Jong, W. A. Resource-efficient chemistry on quantum computers with the variational quantum eigensolver and the double unitary coupled-cluster approach. J. Chem. Theory Comput. 16, 6165–6175 (2020).

    Article 

    Google Scholar 

  • Rossmannek, M., Barkoutsos, P. K., Ollitrault, P. J. & Tavernelli, I. Quantum HF/DFT-embedding algorithms for electronic structure calculations: scaling up to complex molecular systems. J. Chem. Phys. 154, 114105 (2021).

    Article 

    Google Scholar 

  • Kawashima, Y. et al. Efficient and accurate electronic structure simulation demonstrated on a trapped-ion quantum computer. Preprint at http://arxiv.org/abs/2102.07045 (2021).

  • Teplukhin, A. et al. Computing molecular excited states on a D-Wave quantum annealer. Sci. Rep. 11, 18796 (2021).

    Article 

    Google Scholar 

  • Kirsopp, J. J. M. et al. Quantum computational quantification of protein–ligand interactions. Preprint at http://arxiv.org/abs/2110.08163 (2021).

  • Jones, M. A., Vallury, H. J., Hill, C. D. & Hollenberg, L. C. L. Chemistry beyond the Hartree–Fock limit via quantum computed moments. Preprint at http://arxiv.org/abs/2111.08132 (2021).

  • Kivlichan, I. D. et al. Improved fault-tolerant quantum simulation of condensed-phase correlated electrons via trotterization. Quantum 4, 296 (2020).

    Article 

    Google Scholar 

  • Cruz, P. M. Q., Catarina, G., Gautier, R. & Fernández-Rossier, J. Optimizing quantum phase estimation for the simulation of Hamiltonian eigenstates. Quantum Sci. Technol. 5, 044005 (2020).

    Article 

    Google Scholar 

  • Montanaro, A. & Stanisic, S. Compressed variational quantum eigensolver for the Fermi–Hubbard model. Preprint at http://arxiv.org/abs/2006.01179 (2020).

  • Uvarov, A., Biamonte, J. D. & Yudin, D. Variational quantum eigensolver for frustrated quantum systems. Phys. Rev. B 102, 075104 (2020).

    Article 

    Google Scholar 

  • Motta, M. et al. Determining eigenstates and thermal states on a quantum computer using quantum imaginary time evolution. Nat. Phys. 16, 205–210 (2020).

    Article 

    Google Scholar 

  • Mei, F. et al. Digital simulation of topological matter on programmable quantum processors. Phys. Rev. Lett. 125, 160503 (2020).

    Article 

    Google Scholar 

  • Mizuta, K. et al. Deep variational quantum eigensolver for excited states and its application to quantum chemistry calculation of periodic materials. Phys. Rev. Res. 3, 043121 (2021).

    Article 

    Google Scholar 

  • Liu, J., Wan, L., Li, Z. & Yang, J. Simulating periodic systems on a quantum computer using molecular orbitals. J. Chem. Theory Comput. 16, 6904–6914 (2020).

    Article 

    Google Scholar 

  • Kaicher, M. P., Jäger, S. B., Dallaire-Demers, P.-L. & Wilhelm, F. K. Roadmap for quantum simulation of the fractional quantum Hall effect. Phys. Rev. A 102, 022607 (2020).

    MathSciNet 
    Article 

    Google Scholar 

  • Rahmani, A. et al. Creating and manipulating a Laughlin-type ν = 1/3 fractional quantum Hall state on a quantum computer with linear depth circuits. PRX Quantum 1, 020309 (2020).

    Article 

    Google Scholar 

  • Kreula, J. M. et al. Few-qubit quantum–classical simulation of strongly correlated lattice fermions. EPJ Quantum Technol. 3, 11 (2016).

  • Kreula, J. M., Clark, S. R. & Jaksch, D. Non-linear quantum–classical scheme to simulate non-equilibrium strongly correlated fermionic many-body dynamics. Sci. Rep. 6, 32940 (2016).

    Article 

    Google Scholar 

  • Jaderberg, B., Agarwal, A., Leonhardt, K., Kiffner, M. & Jaksch, D. Minimum hardware requirements for hybrid quantum–classical DMFT. Quantum Sci. Technol. 5, 034015 (2020).

    Article 

    Google Scholar 

  • Lupo, C., Jamet, F., Tse, T., Rungger, I. & Weber, C. Maximally localized dynamical quantum embedding for solving many-body correlated systems. Preprint at http://arxiv.org/abs/2008.04281 (2021).

  • Bauer, B., Wecker, D., Millis, A. J., Hastings, M. B. & Troyer, M. Hybrid quantum–classical approach to correlated materials. Phys. Rev. X 6, 031045 (2016).

    Google Scholar 

  • Rubin, N. C. A hybrid classical/quantum approach for large-scale studies of quantum systems with density matrix embedding theory. Preprint at http://arxiv.org/abs/1610.06910 (2016).

  • Mineh, L. & Montanaro, A. Solving the Hubbard model using density matrix embedding theory and the variational quantum eigensolver. Phys. Rev. B 105, 125117 (2022).

    Article 

    Google Scholar 

  • Li, W. et al. Toward practical quantum embedding simulation of realistic chemical systems on near-term quantum computers. Preprint at http://arxiv.org/abs/2109.08062 (2021).

  • Georges, A. & Kotliar, G. Hubbard model in infinite dimensions. Phys. Rev. B 45, 6479–6483 (1992).

    Article 

    Google Scholar 

  • Georges, A., Kotliar, G., Krauth, W. & Rozenberg, M. J. Dynamical mean-field theory of strongly correlated fermion systems and the limit of infinite dimensions. Rev. Mod. Phys. 68, 13–125 (1996).

    MathSciNet 
    Article 

    Google Scholar 

  • Georges, A. Strongly correlated electron materials: dynamical mean-field theory and electronic structure. AIP Conf. Proc. 715, 3–74 (2004).

    Article 

    Google Scholar 

  • Anisimov, V. I., Poteryaev, A. I., Korotin, M. A., Anokhin, A. O. & Kotliar, G. First-principles calculations of the electronic structure and spectra of strongly correlated systems: dynamical mean-field theory. J. Phys. Condens. Matter 9, 7359–7367 (1997).

    Article 

    Google Scholar 

  • Kotliar, G. et al. Electronic structure calculations with dynamical mean-field theory. Rev. Mod. Phys. 78, 865–951 (2006).

    Article 

    Google Scholar 

  • Wouters, S., Jiménez-Hoyos, C. A., Sun, Q. & Chan, G. K.-L. A practical guide to density matrix embedding theory in quantum chemistry. J. Chem. Theory Comput. 12, 2706–2719 (2016).

    Article 

    Google Scholar 

  • Knizia, G. & Chan, G. K.-L. Density matrix embedding: a simple alternative to dynamical mean-field theory. Phys. Rev. Lett. 109, 186404 (2012).

    Article 

    Google Scholar 

  • Knizia, G. & Chan, G. K.-L. Density matrix embedding: a strong-coupling quantum embedding theory. J. Chem. Theory Comput. 9, 1428–1432 (2013).

    Article 

    Google Scholar 

  • Pham, H. Q., Hermes, M. R. & Gagliardi, L. Periodic electronic structure calculations with the density matrix embedding theory. J. Chem. Theory Comput. 16, 130–140 (2020).

    Article 

    Google Scholar 

  • Hermes, M. R. & Gagliardi, L. Multiconfigurational self-consistent field theory with density matrix embedding: the localized active space self-consistent field method. J. Chem. Theory Comput. 15, 972–986 (2019).

    Article 

    Google Scholar 

  • Pham, H. Q., Bernales, V. & Gagliardi, L. Can density matrix embedding theory with the complete activate space self-consistent field solver describe single and double bond breaking in molecular systems? J. Chem. Theory Comput. 14, 1960–1968 (2018).

    Article 

    Google Scholar 

  • Rungger, I. et al. Dynamical mean field theory algorithm and experiment on quantum computers. Preprint at http://arxiv.org/abs/1910.04735 (2020).

  • Keen, T., Maier, T., Johnston, S. & Lougovski, P. Quantum–classical simulation of two-site dynamical mean-field theory on noisy quantum hardware. Quantum Sci. Technol. 5, 035001 (2020).

    Article 

    Google Scholar 

  • Yao, Y., Zhang, F., Wang, C.-Z., Ho, K.-M. & Orth, P. P. Gutzwiller hybrid quantum–classical computing approach for correlated materials. Phys. Rev. Res. 3, 013184 (2021).

    Article 

    Google Scholar 

  • Tilly, J. et al. Reduced density matrix sampling: self-consistent embedding and multiscale electronic structure on current generation quantum computers. Phys. Rev. Res. 3, 033230 (2021).

    Article 

    Google Scholar 

  • Bassman, L. et al. Simulating quantum materials with digital quantum computers. Quantum Sci. Technol. 6, 043002 (2021).

    Article 

    Google Scholar 

  • Cerasoli, F. T., Sherbert, K., Sławińska, J. & Nardelli, M. B. Quantum computation of silicon electronic band structure. Phys. Chem. Chem. Phys. 22, 21816–21822 (2020).

    Article 

    Google Scholar 

  • Sureshbabu, S. H., Sajjan, M., Oh, S. & Kais, S. Implementation of quantum machine learning for electronic structure calculations of periodic systems on quantum computing devices. J. Chem. Inf. Modeling 61, 2667–2674 (2021).

  • Choudhary, K. Quantum computation for predicting electron and phonon properties of solids. J. Phys. Condens. Matter 33, 385501 (2021).

    Article 

    Google Scholar 

  • Libisch, F., Huang, C. & Carter, E. A. Embedded correlated wavefunction schemes: theory and applications. Acc. Chem. Res. 47, 2768–2775 (2014).

    Article 

    Google Scholar 

  • Wesolowski, T. A., Shedge, S. & Zhou, X. Frozen-density embedding strategy for multilevel simulations of electronic structure. Chem. Rev. 115, 5891–5928 (2015).

    Article 

    Google Scholar 

  • Jacob, C. R. & Neugebauer, J. Subsystem density-functional theory. WIREs Comput. Mol. Sci. 4, 325–362 (2014).

    Article 

    Google Scholar 

  • Ma, H., Sheng, N., Govoni, M. & Galli, G. First-principles studies of strongly correlated states in defect spin qubits in diamond. Phys. Chem. Chem. Phys. 22, 25522–25527 (2020).

    Article 

    Google Scholar 

  • Ma, H., Govoni, M. & Galli, G. Quantum simulations of materials on near-term quantum computers. npj Comput. Mater. 6, 85 (2020).

  • Ma, H., Sheng, N., Govoni, M. & Galli, G. Quantum embedding theory for strongly correlated states in materials. J. Chem. Theory Comput. 17, 2116–2125 (2021).

    Article 

    Google Scholar 

  • Lan, T. N. & Zgid, D. Generalized self-energy embedding theory. J. Phys. Chem. Lett. 8, 2200–2205 (2017).

    Article 

    Google Scholar 

  • Zgid, D. & Gull, E. Finite temperature quantum embedding theories for correlated systems. New J. Phys. 19, 023047 (2017).

    Article 

    Google Scholar 

  • Rusakov, A. A., Iskakov, S., Tran, L. N. & Zgid, D. Self-energy embedding theory (SEET) for periodic systems. J. Chem. Theory Comput. 15, 229–240 (2019).

    Article 

    Google Scholar 

  • Biermann, S., Aryasetiawan, F. & Georges, A. First-principles approach to the electronic structure of strongly correlated systems: combining the GW approximation and dynamical mean-field theory. Phys. Rev. Lett. 90, 086402 (2003).

    Article 

    Google Scholar 

  • Biermann, S. Dynamical screening effects in correlated electron materials—a progress report on combined many-body perturbation and dynamical mean field theory: ‘GW + DMFT’. J. Phys. Condens. Matter 26, 173202 (2014).

    Article 

    Google Scholar 

  • Boehnke, L., Nilsson, F., Aryasetiawan, F. & Werner, P. When strong correlations become weak: consistent merging of GW and DMFT. Phys. Rev. B 94, 201106 (2016).

    Article 

    Google Scholar 

  • Choi, S., Kutepov, A., Haule, K., van Schilfgaarde, M. & Kotliar, G. First-principles treatment of Mott insulators: linearized QSGW + DMFT approach npj Quantum Mater. 1, 16001 (2016).

  • Nilsson, F., Boehnke, L., Werner, P. & Aryasetiawan, F. Multitier self-consistent GW + EDMFT. Phys. Rev. Mater. 1, 043803 (2017).

    Article 

    Google Scholar 

  • Sun, P. & Kotliar, G. Extended dynamical mean-field theory and GW method. Phys. Rev. B 66, 085120 (2002).

    Article 

    Google Scholar 

  • Lichtenstein, A. I. & Katsnelson, M. I. Ab initio calculations of quasiparticle band structure in correlated systems: LDA++ approach. Phys. Rev. B 57, 6884–6895 (1998).

    Article 

    Google Scholar 

  • Dhawan, D., Metcalf, M. & Zgid, D. Dynamical self-energy mapping (DSEM) for quantum computing. Preprint at http://arxiv.org/abs/2010.05441 (2021).

  • Otten, M. et al. Localized quantum chemistry on quantum computers. Preprint at https://doi.org/10.33774/chemrxiv-2021-0nmwt (2021).

  • Seo, H., Govoni, M. & Galli, G. Design of defect spins in piezoelectric aluminum nitride for solid-state hybrid quantum technologies. Sci. Rep. 6, 20803 (2016).

    Article 

    Google Scholar 

  • Seo, H., Ma, H., Govoni, M. & Galli, G. Designing defect-based qubit candidates in wide-gap binary semiconductors for solid-state quantum technologies. Phys. Rev. Mater. 1, 075002 (2017).

    Article 

    Google Scholar 

  • Ivády, V., Abrikosov, I. A. & Gali, A. First principles calculation of spin-related quantities for point defect qubit research. npj Comput. Mater. 4, 76 (2018). .

  • Anderson, C. P. et al. Electrical and optical control of single spins integrated in scalable semiconductor devices. Science 366, 1225–1230 (2019).

    Article 

    Google Scholar 

  • Sun, Q. & Chan, G. K.-L. Quantum embedding theories. Acc. Chem. Res. 49, 2705–2712 (2016).

    Article 

    Google Scholar 

  • Jones, L. O., Mosquera, M. A., Schatz, G. C. & Ratner, M. A. Embedding methods for quantum chemistry: applications from materials to life sciences. J. Am. Chem. Soc. 142, 3281–3295 (2020).

    Article 

    Google Scholar 

  • Lin, H. & Truhlar, D. G. QM/MM: what have we learned, where are we, and where do we go from here? Theor. Chem. Acc. 117, 185 (2006).

    Article 

    Google Scholar 

  • Wang, B. et al. Quantum mechanical fragment methods based on partitioning atoms or partitioning coordinates. Acc. Chem. Res. 47, 2731–2738 (2014).

    Article 

    Google Scholar 

  • Pezeshki, S. & Lin, H. Recent developments in QM/MM methods towards open-boundary multi-scale simulations. Mol. Simul. 41, 168–189 (2015).

    Article 

    Google Scholar 

  • He, N. & Evangelista, F. A. A zeroth-order active-space frozen-orbital embedding scheme for multireference calculations. J. Chem. Phys. 152, 094107 (2020).

    Article 

    Google Scholar 

  • Gujarati, T. P. et al. Quantum computation of reactions on surfaces using local embedding. Preprint at http://arxiv.org/abs/2203.07536 (2022).

  • Lau, B. T. G., Knizia, G. & Berkelbach, T. C. Regional embedding enables high-level quantum chemistry for surface science. J. Phys. Chem. Lett. 12, 1104–1109 (2021).

    Article 

    Google Scholar 

  • Cui, Z.-H., Zhu, T. & Chan, G. K.-L. Efficient implementation of ab initio quantum embedding in periodic systems: density matrix embedding theory. J. Chem. Theory Comput. 16, 119–129 (2020).

    Article 

    Google Scholar 

  • Cui, Z.-H., Zhai, H., Zhang, X. & Chan, G. K.-L. Systematic electronic structure in the cuprate parent state from quantum many-body simulations. Preprint at http://arxiv.org/abs/2112.09735 (2022).

  • Anderson, P. W. Localized magnetic states in metals. Phys. Rev. 124, 41–53 (1961).

    MathSciNet 
    Article 

    Google Scholar 

  • Sheng, N., Vorwerk, C., Govoni, M. & Galli, G. Green’s function formulation of quantum defect embedding theory. J. Chem. Theory Comput. 18, 3512–3522 (2022).

    Article 

    Google Scholar 

  • Werner, P. & Millis, A. J. Efficient dynamical mean field simulation of the Holstein–Hubbard model. Phys. Rev. Lett. 99, 146404 (2007).

    Article 

    Google Scholar 

  • Nilsson, F. & Aryasetiawan, F. Recent progress in first-principles methods for computing the electronic structure of correlated materials. Computation 6, 26 (2018).

    Article 

    Google Scholar 

  • Sakuma, R., Werner, P. & Aryasetiawan, F. Electronic structure of SrVO3 within GW + DMFT. Phys. Rev. B 88, 235110 (2013).

    Article 

    Google Scholar 

  • Petocchi, F., Nilsson, F., Aryasetiawan, F. & Werner, P. Screening from eg states and antiferromagnetic correlations in d(1, 2, 3) perovskites: a GW + EDMFT investigation. Phys. Rev. Res. 2, 013191 (2020).

    Article 

    Google Scholar 

  • Tomczak, J. M., Liu, P., Toschi, A., Kresse, G. & Held, K. Merging GW with DMFT and non-local correlations beyond. Eur. Phys. J. Spec. Top. 226, 2565–2590 (2017).

    Article 

    Google Scholar 

  • Reining, L. The GW approximation: content, successes and limitations. WIREs Comput. Mol. Sci. 8, e1344 (2018).

    Article 

    Google Scholar 

  • Onida, G., Reining, L. & Rubio, A. Electronic excitations: density-functional versus many-body Green’s-function approaches. Rev. Mod. Phys. 74, 601–659 (2002).

    Article 

    Google Scholar 

  • Hedin, L. On correlation effects in electron spectroscopies and the GW approximation. J. Phys. Condens. Matter 11, R489–R528 (1999).

    Article 

    Google Scholar 

  • Aryasetiawan, F. & Gunnarsson, O. The GW method. Rep. Prog. Phys. 61, 237–312 (1998).

    Article 

    Google Scholar 

  • Golze, D., Dvorak, M. & Rinke, P. The GW compendium: a practical guide to theoretical photoemission spectroscopy. Front. Chem. 7, 377 (2019).

    Article 

    Google Scholar 

  • Choi, S., Semon, P., Kang, B., Kutepov, A. & Kotliar, G. ComDMFT: a massively parallel computer package for the electronic structure of correlated-electron systems. Comput. Phys. Commun. 244, 277–294 (2019).

    Article 

    Google Scholar 

  • Tomczak, J. M., Casula, M., Miyake, T., Aryasetiawan, F. & Biermann, S. Combined GW and dynamical mean-field theory: dynamical screening effects in transition metal oxides. EPL 100, 67001 (2012).

    Article 

    Google Scholar 

  • Aryasetiawan, F. et al. Frequency-dependent local interactions and low-energy effective models from electronic structure calculations. Phys. Rev. B 70, 195104 (2004).

    Article 

    Google Scholar 

  • Aryasetiawan, F., Tomczak, J. M., Miyake, T. & Sakuma, R. Downfolded self-energy of many-electron systems. Phys. Rev. Lett. 102, 176402 (2009).

    Article 

    Google Scholar 

  • Miyake, T. & Aryasetiawan, F. Screened Coulomb interaction in the maximally localized Wannier basis. Phys. Rev. B 77, 085122 (2008).

    Article 

    Google Scholar 

  • Hampel, A., Beck, S. & Ederer, C. Effect of charge self-consistency in DFT + DMFT calculations for complex transition metal oxides. Phys. Rev. Res. 2, 033088 (2020).

    Article 

    Google Scholar 

  • Bhandary, S. & Held, K. Self-energy self-consistent density functional theory plus dynamical mean field theory. Phys. Rev. B 103, 245116 (2021).

    Article 

    Google Scholar 

  • Lee, J. & Haule, K. Diatomic molecule as a testbed for combining DMFT with electronic structure methods such as GW and DFT. Phys. Rev. B 95, 155104 (2017).

    Article 

    Google Scholar 

  • Eidelstein, E., Gull, E. & Cohen, G. Multiorbital quantum impurity solver for general interactions and hybridizations. Phys. Rev. Lett. 124, 206405 (2020).

    Article 

    Google Scholar 

  • Seth, P., Krivenko, I., Ferrero, M. & Parcollet, O. TRIQS/CTHYB: a continuous-time quantum Monte Carlo hybridisation expansion solver for quantum impurity problems. Comput. Phys. Commun. 200, 274–284 (2016).

    Article 

    Google Scholar 

  • Werner, P. & Millis, A. J. Dynamical screening in correlated electron materials. Phys. Rev. Lett. 104, 146401 (2010).

    Article 

    Google Scholar 

  • Medvedeva, D., Iskakov, S., Krien, F., Mazurenko, V. V. & Lichtenstein, A. I. Exact diagonalization solver for extended dynamical mean-field theory. Phys. Rev. B 96, 235149 (2017).

    Article 

    Google Scholar 

  • Werner, P. & Casula, M. Dynamical screening in correlated electron systems—from lattice models to realistic materials. J. Phys. Condens. Matter 28, 383001 (2016).

    Article 

    Google Scholar 

  • Adler, R., Kang, C.-J., Yee, C.-H. & Kotliar, G. Correlated materials design: prospects and challenges. Rep. Prog. Phys. 82, 012504 (2018).

    Article 

    Google Scholar 

  • Haule, K. Exact double counting in combining the dynamical mean field theory and the density functional theory. Phys. Rev. Lett. 115, 196403 (2015).

    Article 

    Google Scholar 

  • Haule, K., Yee, C.-H. & Kim, K. Dynamical mean-field theory within the full-potential methods: electronic structure of CeIrIn5, CeCoIn5, and CeRhIn5. Phys. Rev. B 81, 195107 (2010).

    Article 

    Google Scholar 

  • Haule, K., Birol, T. & Kotliar, G. Covalency in transition-metal oxides within all-electron dynamical mean-field theory. Phys. Rev. B 90, 075136 (2014).

    Article 

    Google Scholar 

  • van Roekeghem, A. et al. Dynamical correlations and screened exchange on the experimental bench: spectral properties of the cobalt pnictide BaCo2As2. Phys. Rev. Lett. 113, 266403 (2014).

    Article 

    Google Scholar 

  • Yeh, C.-N., Iskakov, S., Zgid, D. & Gull, E. Electron correlations in the cubic paramagnetic perovskite Sr(V, Mn)O3: results from fully self-consistent self-energy embedding calculations. Phys. Rev. B 103, 195149 (2021).

    Article 

    Google Scholar 

  • Iskakov, S., Yeh, C.-N., Gull, E. & Zgid, D. Ab initio self-energy embedding for the photoemission spectra of NiO and MnO. Phys. Rev. B 102, 085105 (2021).

    Article 

    Google Scholar 

  • Kananenka, A. A., Gull, E. & Zgid, D. Systematically improvable multiscale solver for correlated electron systems. Phys. Rev. B 91, 121111 (2015).

    Article 

    Google Scholar 

  • Lan, T. N., Kananenka, A. A. & Zgid, D. Communication: Towards ab initio self-energy embedding theory in quantum chemistry. J. Chem. Phys. 143, 241102 (2015).

    Article 

    Google Scholar 

  • Lan, T. N., Shee, A., Li, J., Gull, E. & Zgid, D. Testing self-energy embedding theory in combination with GW. Phys. Rev. B 96, 155106 (2017).

    Article 

    Google Scholar 

  • Muechler, L. et al. Quantum embedding methods for correlated excited states of point defects: Case studies and challenges. Phys. Rev. B 105, 235104 (2022).

    Article 

    Google Scholar 

  • Govoni, M. & Galli, G. Large scale GW calculations. J. Chem. Theory Comput. 11, 2680–2696 (2015).

    Article 

    Google Scholar 

  • Scherpelz, P., Govoni, M., Hamada, I. & Galli, G. Implementation and validation of fully relativistic GW calculations: spin–orbit coupling in molecules, nanocrystals, and solids. J. Chem. Theory Comput. 12, 3523–3544 (2016).

    Article 

    Google Scholar 

  • Govoni, M. & Galli, G. GW100: comparison of methods and accuracy of results obtained with the WEST code. J. Chem. Theory Comput. 14, 1895–1909 (2018).

    Article 

    Google Scholar 

  • Govoni, M., Whitmer, J., de Pablo, J., Gygi, F. & Galli, G. Code interoperability extends the scope of quantum simulations. npj Comput. Mater. 7, 32 (2021).

  • Casula, M., Rubtsov, A. & Biermann, S. Dynamical screening effects in correlated materials: plasmon satellites and spectral weight transfers from a Green’s function ansatz to extended dynamical mean field theory. Phys. Rev. B 85, 035115 (2012).

    Article 

    Google Scholar 

  • Krivenko, I. S. & Biermann, S. Slave rotor approach to dynamically screened Coulomb interactions in solids. Phys. Rev. B 91, 155149 (2015).

    Article 

    Google Scholar 

  • Nomura, Y., Sakai, S. & Arita, R. Multiorbital cluster dynamical mean-field theory with an improved continuous-time quantum Monte Carlo algorithm. Phys. Rev. B 89, 195146 (2014).

    Article 

    Google Scholar 

  • Mizuno, R., Ochi, M. & Kuroki, K. Development of an efficient impurity solver in dynamical mean field theory for multiband systems: iterative perturbation theory combined with parquet equations. Phys. Rev. B 104, 035160 (2021).

    Article 

    Google Scholar 

  • Kotliar, G., Savrasov, S. Y., Pálsson, G. & Biroli, G. Cellular dynamical mean field approach to strongly correlated systems. Phys. Rev. Lett. 87, 186401 (2001).

    Article 

    Google Scholar 

  • De Leo, L., Civelli, M. & Kotliar, G. Cellular dynamical mean-field theory of the periodic Anderson model. Phys. Rev. B 77, 075107 (2008).

    Article 

    Google Scholar 

  • Gull, E. et al. Submatrix updates for the continuous-time auxiliary-field algorithm. Phys. Rev. B 83, 075122 (2011).

    Article 

    Google Scholar 

  • Simons Collaboration on the Many-Electron Problem et al. Solutions of the two-dimensional Hubbard model: benchmarks and results from a wide range of numerical algorithms. Phys. Rev. X 5, 041041 (2015).

  • Jamet, F. et al. Krylov variational quantum algorithm for first principles materials simulations. Preprint at http://arxiv.org/abs/2105.13298 (2021).

  • Wecker, D. et al. Solving strongly correlated electron models on a quantum computer. Phys. Rev. A 92, 062318 (2015).

    Article 

    Google Scholar 

  • Huang, B., Govoni, M. & Galli, G. Simulating the electronic structure of spin defects on quantum computers. PRX Quantum 3, 010339 (2022).

    Article 

    Google Scholar 

  • McClean, J. R., Kimchi-Schwartz, M. E., Carter, J. & de Jong, W. A. Hybrid quantum–classical hierarchy for mitigation of decoherence and determination of excited states. Phys. Rev. A 95, 042308 (2017).

    Article 

    Google Scholar 

  • Endo, S., Cai, Z., Benjamin, S. C. & Yuan, X. Hybrid quantum–classical algorithms and quantum error mitigation. J. Phys. Soc. Jpn 90, 032001 (2021).

    Article 

    Google Scholar 

  • Bauer, B., Bravyi, S., Motta, M. & Kin-Lic Chan, G. Quantum algorithms for quantum chemistry and quantum materials science. Chem. Rev. 120, 12685–12717 (2020).

    Article 

    Google Scholar 

  • Korol, K. J. M., Choo, K. & Mezzacapo, A. Quantum approximation algorithms for many-body and electronic structure problems. Preprint at http://arxiv.org/abs/2111.08090 (2021).

  • Wecker, D., Bauer, B., Clark, B. K., Hastings, M. B. & Troyer, M. Gate-count estimates for performing quantum chemistry on small quantum computers. Phys. Rev. A 90, 022305 (2014).

    Article 

    Google Scholar 

  • Preskill, J. Quantum computing in the NISQ era and beyond. Quantum 2, 79 (2018).

    Article 

    Google Scholar 

  • Lebreuilly, J., Noh, K., Wang, C.-H., Girvin, S. M. & Jiang, L. Autonomous quantum error correction and quantum computation. Preprint at http://arxiv.org/abs/2103.05007 (2021).

  • Fedorov, D. A., Otten, M. J., Gray, S. K. & Alexeev, Y. Ab initio molecular dynamics on quantum computers. J. Chem. Phys. 154, 164103 (2021).

    Article 

    Google Scholar 

  • Macridin, A., Spentzouris, P., Amundson, J. & Harnik, R. Electron–phonon systems on a universal quantum computer. Phys. Rev. Lett. 121, 110504 (2018).

    Article 

    Google Scholar 

  • Powers, C., Bassman, L. & de Jong, W. A. Exploring finite temperature properties of materials with quantum computers. Preprint at http://arxiv.org/abs/2109.01619 (2021).

  • Wu, J. & Hsieh, T. H. Variational thermal quantum simulation via thermofield double states. Phys. Rev. Lett. 123, 220502 (2019).

    Article 

    Google Scholar